题目内容
19.某几何体的三视图如图所示,则该几何体的体积等于( )A. | $\frac{20}{3}$ | B. | $\frac{22}{3}$ | C. | $\frac{24}{3}$ | D. | $\frac{26}{3}$ |
分析 首先根据三视图把平面图复原成立体图形,进一步利用几何体的体积公式求出结果.
解答 解:根据三视图得知:
该几何体是有一个棱长为2的正方体,在每个角上的三条棱的中点处截去一个三棱锥体,共截去8个小三棱锥.
则:该几何体的体积为:V=${2}^{3}-8•\frac{1}{3}•\frac{1}{2}•1•1•1$=$\frac{20}{3}$
故选:A
点评 本题考查的知识要点:三视图与立体图之间的转换,几何体的体积公式的应用.主要考查学生的空间想象能力和应用能力.
练习册系列答案
相关题目
7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
申请意向 年龄 | 摇号 | 竞价(人数) | 合计 | |
电动小汽车(人数) | 非电动小汽车(人数) | |||
30岁以下 (含30岁) | 50 | 100 | 50 | 200 |
30至50岁 (含50岁) | 50 | 150 | 300 | 500 |
50岁以上 | 100 | 150 | 50 | 300 |
合计 | 200 | 400 | 400 | 1000 |
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
9.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了72名居民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:
(1)用分层抽样的方法在缴费100~500元之间的居民中随机抽取6人,则年龄在20~39岁之间应抽取几人?(2)在缴费100~500元之间抽取的6人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
100~500元 | 600~1000元 | 总计 | |
20~39岁 | 12 | 9 | 31 |
40~59岁 | 24 | 17 | 41 |
总计 | 36 | 36 | 72 |