题目内容
过椭圆![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_ST/0.png)
A.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_ST/1.png)
B.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_ST/2.png)
C.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_ST/3.png)
D.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_ST/4.png)
【答案】分析:由直线方程的点斜式,可得直线AB的方程为y=
(x-2),与椭圆的方程消去x,得(a2+
b2)y2+
b2y+4b2-a2b2=0.设A(x1,y1),B(x2,y2),由根与系数的关系结合已知条件得y1+y2=-
=-y1,y1y2=
=-2y12,消去y1得关于a、b的方程,结合a2=b2+4联解,可得a=3,从而得到该椭圆的离心率.
解答:解:∵直线AB经过F(2,0)且倾斜角为60°,
∴AB的斜率k=tan60°=
,得直线AB方程为y=
(x-2)
将直线AB方程与椭圆
=1联解,消去x得:(a2+
b2)y2+
b2y+4b2-a2b2=0
设A(x1,y1),B(x2,y2),得y1+y2=-
,y1y2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/11.png)
∵|BF|=2|AF|,
∴y1+y2=-y1=
,y1y2=-2y12=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/13.png)
消去y1,得-2(
)2=
…(1)
又∵椭圆的焦点F(2,0)
∴a2=b2+4,代入(1)式化简整理,得-96b4=-3b4(4b2+12),解之得b2=5
由此可得a2=9,a=3,所以椭圆的离心率e=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/16.png)
故选:B
点评:本题给出椭圆经过右焦点倾角为60度的弦AB被焦点分成1:2的两部分,求椭圆的离心率,着重考查了椭圆的几何性质、直线与椭圆的位置关系等知识点,属于基础题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/4.png)
解答:解:∵直线AB经过F(2,0)且倾斜角为60°,
∴AB的斜率k=tan60°=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/6.png)
将直线AB方程与椭圆
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/9.png)
设A(x1,y1),B(x2,y2),得y1+y2=-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/11.png)
∵|BF|=2|AF|,
∴y1+y2=-y1=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/13.png)
消去y1,得-2(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/15.png)
又∵椭圆的焦点F(2,0)
∴a2=b2+4,代入(1)式化简整理,得-96b4=-3b4(4b2+12),解之得b2=5
由此可得a2=9,a=3,所以椭圆的离心率e=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103100230501955974/SYS201311031002305019559009_DA/16.png)
故选:B
点评:本题给出椭圆经过右焦点倾角为60度的弦AB被焦点分成1:2的两部分,求椭圆的离心率,着重考查了椭圆的几何性质、直线与椭圆的位置关系等知识点,属于基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目