题目内容
【题目】在直角坐标系中,已知定点
、
,动点
满足
,设点
的曲线为
,直线
与
交于
两点.
(1)写出曲线的方程,并指出曲线
的轨迹;
(2)当,求实数
的取值范围;
(3)证明:存在直线,满足
,并求实数
的取值范围.
【答案】(1),曲线
的轨迹是以
、
为焦点的双曲线的上支;(2)
或
;(3)详见解析,
,
【解析】
(1)结合双曲线的定义,可知点的轨迹是以
、
为焦点的双曲线的上支,求出轨迹方程即可;
(2)将直线与的方程联立,消去
,可得到关于
的一元二次方程,令
,求解即可;
(3)联立直线与的方程,得到关于
的一元二次方程,由
,可得
,设
,则
,结合根与系数关系,可得到
,若存在符合题意的直线,还需要满足以下三个条件:①
;②
;③
,求解即可.
(1)动点满足
,且
、
,所以点
的轨迹是以
、
为焦点的双曲线的上支,
,
,
,
所以曲线的方程为
;
(2)由题意,联立,消去
,得
,
,解得
或
.
故的取值范围是
或
.
(3)因为,所以
,设
,则
.
联立,可得
,
,
则,
,
所以,整理得
.
若存在符合题意的直线,还需要满足以下三个条件:①;②
;③
.
①,整理得
,又
,则
,显然恒成立;
②,等价于
,
因为恒成立,所以
,即
;
③,由②知
,所以
.
所以满足
,即
.
又因为,所以
,且
,故
.
所以存在直线,满足
,
的取值范围为:
,
的取值范围为:
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示).规定80分及以上者晋级成功,否则晋级失败(满分100分).
(1)求图中的值;
(2)根据已知条件完成下面列联表,并判断能否有
的把握认为“晋级成功”与性别有关?
晋级成功 | 晋级失败 | 合计 | |
男 | 16 | ||
女 | 50 | ||
合计 |
(参考公式:,其中
)
0.40 | 0.025 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
(3)将频率视为概率,从本次考试80分以上的所有人员中,按分层抽样的方式抽取5个人的样本;现从5人样本中随机选取2人,求选取的2人恰好都来自区间的概率.