题目内容

已知椭圆
x2
a2
+
y2
b2
=1
上到点A(0,b)距离最远的点是B(0,-b),则椭圆的离心率的取值范围为(  )
A.(0,
6
3
]
B.[
6
3
,1)
C.(0,
2
2
]
D.[
2
2
,1)
设点P(x,y)是椭圆上的任意一点,
x2
a2
+
y2
b2
=1
,化为x2=a2(1-
y2
b2
)

∴|PA|2=x2+(y-b)2=a2(1-
y2
b2
)+(y-b)2
=-
c2
b2
(y-
-b3
c2
)2+
a4
c2
=f(y),
∵椭圆上的点P到点A(0,b)距离最远的点是B(0,-b),
由二次函数的单调性可知:f(y)在(-b,b)单调递减,
-b3
c2
≤-b

化为c2≤b2=a2-c2,即2c2≤a2
e≤
2
2

又e>0.
∴离心率的取值范围是(0,
2
2
]

故选:C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网