题目内容
【题目】二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:
使用年数 | 2 | 4 | 6 | 8 | 10 |
售价 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)试求y关于x的回归直线方程;(参考公式: = , =y﹣ )
(2)已知每辆该型号汽车的收购价格为w=0.01x3﹣0.09x2﹣1.45x+17.2万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润L(x)最大?(利润=售价﹣收购价)
【答案】
(1)解:由已知: , ,
, , ,
所求线性回归直线方程为
(2)解:L(x)=y﹣w=﹣1.45x+18.7﹣(0.01x3﹣0.09x2﹣1.45x+17.2)=﹣0.01x3+0.09x2+1.5(0<x≤10)
L′(x)=﹣0.03x2+0.18x=﹣0.03x(x﹣6)
x∈(0,6)时,L′(x)>0,L(x)单调递增,x∈(6,10]时,L′(x)<0,L(x)单调递减
所以预测x=6时,销售一辆该型号汽车所获得的利润L(x)最大
【解析】(1)由表中数据计算b,a,即可写出回归直线方程;(2)写出利润函数L(x)=y﹣w,利用导数求出x=6时L(x)取得最大值.
练习册系列答案
相关题目