题目内容
已知函数
,
,其中
.
(Ⅰ)求
的极值;
(Ⅱ)若存在区间
,使
和
在区间
上具有相同的单调性,求
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847286686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847302711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847318403.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
(Ⅱ)若存在区间
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847349386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847349386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847411283.png)
(Ⅰ)极小值为
;没有极大值(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847489792.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847474881.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847489792.png)
(Ⅰ)解:
的定义域为
,………………1分
且
. ………………2分
① 当
时,
,故
在
上单调递减.
从而
没有极大值,也没有极小值. ………………3分
② 当
时,令
,得
.
和
的情况如下:
故
的单调减区间为
;单调增区间为
.
从而
的极小值为
;没有极大值.………………5分
(Ⅱ)解:
的定义域为
,且
.………………6分
③ 当
时,显然
,从而
在
上单调递增.
由(Ⅰ)得,此时
在
上单调递增,符合题意. ………………8分
④ 当
时,
在
上单调递增,
在
上单调递减,不合题意.……9分
⑤ 当
时,令
,得
.
和
的情况如下表:
当
时,
,此时
在
上单调递增,由于
在
上单调递减,不合题意. ………………11分
当
时,
,此时
在
上单调递减,由于
在
上单调递减,符合题意.
综上,
的取值范围是
. ………………13
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847520527.png)
且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847536841.png)
① 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847552403.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847567572.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847520527.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
② 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847661392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847661556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847676437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847708492.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ↘ | | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847864519.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847879615.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847910670.png)
(Ⅱ)解:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847957277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847973751.png)
③ 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847661392.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848004556.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847957277.png)
由(Ⅰ)得,此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847879615.png)
④ 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848098371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847957277.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848160528.png)
⑤ 当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848176391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848191549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848207765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848238486.png)
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
![]() | ↘ | | ↗ |
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848378496.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848394445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848410583.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848160528.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848456405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848472453.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847380466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848503574.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847333463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040848160528.png)
综上,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847411283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824040847489792.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目