题目内容
【题目】在平面直角坐标系xoy中,圆O的参数方程为(为参数).过点()且倾斜角为的直线与圆O交于A、B两点.
(1)求的取值范围;
(2)求AB中点P的轨迹的参数方程.
【答案】(1)(2)
【解析】
(1)⊙O的普通方程为x2+y2=1,圆心为O(0,0),半径r=1,当α=时,直线l的方程为x=0,成立;当α≠时,过点(0,﹣)且倾斜角为α的直线l的方程为y=tanαx+,从而圆心O(0,0)到直线l的距离d=<1,进而求出或,由此能求出α的取值范围.
(2)设直线l的方程为x=m(y+),联立,得(m2+1)y2+2+2m2﹣1=0,由此利用韦达定理、中点坐标公式能求出AB中点P的轨迹的参数方程.
(1)圆O的直角坐标方程为:,当时,与圆O交于两点,
当时,设,则的方程为: 与圆O交于两点当且仅当
解得:或,即或,
.
(2) 的参数方程为:
,
,
,
.
练习册系列答案
相关题目
【题目】一台机器由于使用时间较长,生产的零件有一些缺损.按不同转速生产出来的零件有缺损的统计数据如下表所示:
转速x(转/秒) | 16 | 4 | 12 | 8 |
每小时生产有缺损零件数y(个) | 11 | 9 | 8 | 5 |
(1)作出散点图;
(2)如果y与x线性相关,求出回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?