题目内容

【题目】设函数f(x)=ax+bx﹣cx , 其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列结论中正确的是( )
①对一切x∈(﹣∞,1)都有f(x)>0;
②存在x∈R+ , 使ax , bx , cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则存在x∈(1,2),使f(x)=0.
A.①②
B.①③
C.②③
D.①②③

【答案】D
【解析】解:①∵a,b,c是△ABC的三条边长,∴a+b>c,
∵c>a>0,c>b>0,∴0< <1,0< <1,
当x∈(﹣∞,1)时,f(x)=ax+bx﹣cx=cx[ + ﹣1]
>cx )=cx >0,∴①正确.
②令a=2,b=3,c=4,则a,b,c可以构成三角形,
但a2=4,b2=9,c2=16却不能构成三角形,∴②正确.
③∵c>a>0,c>b>0,若△ABC为钝角三角形,则a2+b2﹣c2<0,
∵f(1)=a+b﹣c>0,f(2)=a2+b2﹣c2<0,
∴根据根的存在性定理可知在区间(1,2)上存在零点,
x∈(1,2),使f(x)=0,∴③正确.
故选:D
【考点精析】本题主要考查了指数函数的图像与性质的相关知识点,需要掌握a0=1, 即x=0时,y=1,图象都经过(0,1)点;ax=a,即x=1时,y等于底数a;在0<a<1时:x<0时,ax>1,x>0时,0<ax<1;在a>1时:x<0时,0<ax<1,x>0时,ax>1才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网