题目内容
已知椭圆
:
(
)的离心率
,直线
与椭圆
交于不同的两点
,以线段
为直径作圆
,圆心为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936057313.png)
(Ⅰ)求椭圆
的方程;
(Ⅱ)当圆
与
轴相切的时候,求
的值;
(Ⅲ)若
为坐标原点,求
面积的最大值。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935667318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935682676.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935698369.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935729551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935854655.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935667318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935901552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935916513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936057313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936057313.png)
(Ⅰ)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935667318.png)
(Ⅱ)当圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936057313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936104309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936150267.png)
(Ⅲ)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936182292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936197631.png)
(Ⅰ)
;(Ⅱ)
;(Ⅲ)1.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936197636.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936228499.png)
试题分析:(Ⅰ)∵椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935667318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935729551.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936260754.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936291386.png)
故椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935667318.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936197636.png)
(Ⅱ)联立方程可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936338955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936353925.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935901552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936384851.png)
∵圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936057313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000935916513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936431310.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936447569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936228499.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936478391.png)
(Ⅲ)由(Ⅱ)可得,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936197631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936525850.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936540705.png)
=1...................10分
当且仅当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936556497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936556521.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000936197631.png)
点评:充分理解圆C与y轴相切的含义是做本题的关键。要满足圆C与y轴相切也就是满足M点的纵坐标与横坐标相等。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目