题目内容
在中,分别是内角的对边,且,若
(1)求的大小;
(2)设为的面积, 求的最大值及此时的值.
(1);(2)当时,取最大值.
解析试题分析:本题主要考查解三角形中正弦定理和余弦定理的运用、向量平行的充要条件以及三角形面积公式等数学知识,考查基本运算能力.第一问,先利用向量平行的充要条件列出表达式,然后用正弦定理将角转化为边,再利用余弦定理求,注意三角形中角的范围,确定角的大小;第二问,用正弦定理表示和边,然后代入到三角形面积公式中,得到所求的表达式,再利用两角和与差的余弦公式化简表达式,求最值.
试题解析:(1)因为,所以
根据正弦定理得,即
由余弦定理得 又,
所以 6分
(2)由正弦定理及得,
所以
所以当时,即时,取最大值. 12分
考点:1.两向量平行的充要条件;2.正弦定理;3.余弦定理;4.三角形面积公式;5.三角函数最值;6.两角和与差的余弦公式.
练习册系列答案
相关题目