题目内容

6.化简:
2$\sqrt{si{n}^{2}4+co{s}^{2}4-2sin4cos4}$-$\sqrt{2(si{n}^{2}4+si{n}^{2}4)-2(cos4+sin4)(cos4-sin4)}$.

分析 把要求的式子化为2|cos4-sin4|-2|sin4|,在去掉绝对值,可得结果.

解答 解:2$\sqrt{si{n}^{2}4+co{s}^{2}4-2sin4cos4}$-$\sqrt{2(si{n}^{2}4+si{n}^{2}4)-2(cos4+sin4)(cos4-sin4)}$=2|cos4-sin4|-2|sin4|
=2(cos4-sin4)+2sin4=2cos4.

点评 本题主要考查同角三角函数的基本关系、诱导公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网