题目内容

记集合A={(x,y)|x2+y2≤16}和集合B={(x,y|)x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率为(  )
A、
1
B、
1
π
C、
1
4
D、
π-2
考点:几何概型
专题:数形结合,概率与统计
分析:根据题意可知,是与面积有关的几何概率,要求M落在区域Ω2内的概率,只要求A、B所表示区域的面积,然后代入概率公式P=
区域Ω2的面积
区域Ω1的面积
,计算即可得答案.
解答:解:根据题意可得集合A={(x,y)|x2+y2≤16}所表示的区域即为如图所表示的圆及内部的平面区域,面积为16π,
集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域即为图中的Rt△AOB,S△AOB=
1
2
×4×4=8,
根据几何概率的计算公式可得P=
8
16π
=
1

故选A.
点评:本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网