题目内容

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定相应的x的值,列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.102 4.24 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成下列问题:
(1)若函数f(x)=x+
4
x
,(x>0)在区间(0,2)上递减,则在
[2,+∞)
[2,+∞)
上递增;
(2)当x=
2
2
时,f(x)=x+
4
x
,(x>0)的最小值为
4
4

(3)试用定义证明f(x)=x+
4
x
,(x>0)在区间(0,2)上递减;
(4)函数f(x)=x+
4
x
,(x<0)有最值吗?是最大值还是最小值?此时x为何值?
分析:(1)观察表格即可得到结论;
(2)观察表格可得到x=2时满足题意;
(3)可以利用单调性的定义进行证明:①设0<x1<x2<2,②f(x1)-f(x2),③整理化简,判断符号即可;
(4)利用函数f(x)=x+
4
x
的奇偶性与单调性即可得到答案.
解答:解:(1)∵f(2.1)=4.005,f(2.2)=4.102,f(2.3)=4.24,f(3)=4.3…
故函数f(x)=x+
4
x
,(x>0)在区间(2,+∞)(左端点可以闭)递增;
 (2)由表格可知,x=2时,ymin=4 (4分)
(3)设0<x1<x2<2,则
f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=(x1-x2)+(
4
x1
-
4
x2
)

=(x1-x2)+
4x2-4x1
x1x2
=(x1-x2)(1-
4
x1x2
)

∵0<x1<x2<2∴x1-x2<0,0<x1x2<4∴
4
x1x2
>1
1-
4
x1x2
<0

(x1-x2)(1-
4
x1x2
)
>0即f(x1)-f(x2)>0∴f(x1)>f(x2
∴f(x)在区间(0,2)上递减.
(4)∵f(x)=x+
4
x
为奇函数,∴当x=-2时有最大值-4.
点评:本题考查函数单调性的判断与证明,着重考查学生观察、分析及用单调性的定义进行证明问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网