题目内容

观察下列表格,探究函数f(x)=x+
4
x
,x∈(0,+∞)
的性质,
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

(2)证明:函数f(x)=x+
4
x
在区间(0,2)递减.
(3)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
分析:(1)根据表格可求得函数的单调区间,根据单调性可求得最小值;
(2)直接利用单调性的定义进行证明即可;
(3)根据(1)可得函数的最值,然后根据奇函数的性质可得结论.
解答:解:(1)根据表格可知,f(x)=x+
4
x
(x>0)在区间(0,2)上单调递减,在(2,+∞)上单调递增,
所以x=2时,f(x)有最小值f(2)=4;
(2)证明:设2>x2>x1>0,则f(x2)-f (x1)=(x2+
4
x2
)-(x1+
4
x1
)=
(x2-x1)(x1x2-4)
x1x2

∵2>x2>x1>0,∴x2-x1>0,x1x2-4<0,
∴f(x2)-f (x1)<0,即f(x2)<f(x1).
∴f(x)在(0,2)上单调递减;
(3)由(1)知,f(x)在(0,2)上单调递减,在(2,+∞)上单调递增,
f(x)在∈(0,+∞)的最小值为f(2)=4,
又f(x)=x+
4
x
为奇函数,所以x<0时,f(x)有最大值f(-2)=-4.
故答案为:(2,+∞),2,4.
点评:本题主要考查函数单调性的性质及其证明,以及函数的奇偶性的应用,同时考查了分析问题的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网