题目内容
【题目】已知圆,圆与轴交于两点,过点的圆的切线为是圆上异于的一点,垂直于轴,垂足为,是的中点,延长分别交于.
(1)若点,求以为直径的圆的方程,并判断是否在圆上;
(2)当在圆上运动时,证明:直线恒与圆相切.
【答案】(1)圆的方程为,且在圆上;(2)证明见解析.
【解析】试题分析:(1)已知点、的坐标,可求出直线的方程,可求出点的坐标,由圆的方程可知点的坐标,可求出以为直径的圆的方程,将点的坐标代入圆的方程,得在圆上;(2)要证明结论,需证明,可先设点坐标,可求点坐标,进而可求点坐标,得与斜率,得得结论.
试题解析:(1)由,∴直线的方程为,
令,得,由,,则直线的方程为,
令,得,∴为线段的中点,以为直径的圆恰以为圆心,半径等于,
所以,所求圆的方程为,且在圆上,
(2)设,则,直线的方程为,
在此方程中令,得,
直线的斜率,
若,则此时与轴垂直,即,若,则此时直线的斜率为
∴,即,则直线与圆相切
练习册系列答案
相关题目
【题目】某研究型学习小组调查研究学生使用智能手机对学习的影响.部分统计数据如下表:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | 4 | 8 | 12 |
学习成绩不优秀 | 16 | 2 | 18 |
合计 | 20 | 10 | 30 |
附表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
经计算,则下列选项正确的是( )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响