题目内容
【题目】已知f(x)是定义在(﹣∞,+∞)上的奇函数,当x>0时,f(x)=4x﹣x2 , 若函数f(x)在区间[t,4]上的值域为[﹣4,4],则实数t的取值范围是 .
【答案】[﹣2﹣2 ,﹣2]
【解析】解:如x<0,则﹣x>0,
∵当x>0时,f(x)=4x﹣x2,
∴当﹣x>0时,f(﹣x)=﹣4x+x2,
∵函数f(x)是奇函数,
∴f(0)=0,且f(﹣x)=﹣4x+x2=﹣f(x),
则f(x)=4x+x2,x<0,
则函数f(x)= ,
则当x>0,f(x)=4x﹣x2=﹣(x﹣2)2+4≤4,
当x<0,f(x)=4x+x2=(x+2)2﹣4≥﹣4,
当x<0时,由4x+x2=4,即x2+4x﹣4=0得x= =﹣2﹣2 ,(正值舍掉),
若函数f(x)在区间[t,4]上的值域为[﹣4,4],
则﹣2﹣2 ≤t≤﹣2,
即实数t的取值范围是[﹣2﹣2 ,﹣2],
所以答案是:[﹣2﹣2 ,﹣2]
【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
【题目】近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重,大气污染可引起心悸、呼吸困难等心肺疾病,为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到如下的列联表.
患心肺疾病 | 不患心肺疾病 | 合计 | |
男 | 5 | ||
女 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为 ,
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为ξ,求ξ的分布列、数学期望以及方差.
下面的临界值表仅供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
K | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |