题目内容
函数f(x)=+lg的定义域是( )
A.(2,4) | B.(3,4) |
C.(2,3)∪(3,4] | D.[2,3)∪(3,4) |
D
解析
练习册系列答案
相关题目
定义域为的偶函数满足对,有,且当 时,,若函数至少有三个零点,则的取值范围是( )
A. | B. | C. | D. |
已知函数f(x)=若关于x的方程f(f(x))=0有且仅有一个实数解,则实数a的取值范围是( )
A.(-∞,0) | B.(-∞,0)∪(0,1) |
C.(0,1) | D.(0,1)∪(1,+∞) |
已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+2)=-f(x);②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图像关于y轴对称.下列结论中,正确的是( )
A.f(4.5)<f(6.5)<f(7) |
B.f(4.5)<f(7)<f(6.5) |
C.f(7)<f(4.5)<f(6.5) |
D.f(7)<f(6.5)<f(4.5) |
已知函数f(x)=若f(2-a2)>f(a),则实数a的取值范围是( )
A.(-∞,-1)∪(2,+∞) |
B.(-1,2) |
C.(-2,1) |
D.(-∞,-2)∪(1,+∞) |
x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R上为( )
A.奇函数 | B.偶函数 |
C.增函数 | D.周期函数 |
函数f(x)=x+sin x(x∈R)( )
A.是偶函数且为减函数 |
B.是偶函数且为增函数 |
C.是奇函数且为减函数 |
D.是奇函数且为增函数 |
设奇函数f(x)在[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时t的取值范围是( )
A.-2≤t≤2 | B.-≤t≤ |
C.t≤-2或t=0或t≥2 | D.t≤-或t=0或t≥ |
已知定义在R上的函数y=f(x)满足以下三个条件:①对于任意的x∈R,都有f(x+4)=f(x);②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2);③函数y=f(x+2)的图象关于y轴对称.则下列结论中正确的是( ).
A.f(4.5)<f(7)<f(6.5) | B.f(7)<f(4.5)<f(6.5) |
C.f(7)<f(6.5)<f(4.5) | D.f(4.5)<f(6.5)<f(7) |