题目内容
【题目】
已知椭圆C: (a>b>0)的左、右焦点分别为F1,F2,离心率为,直线y=x+b截得椭圆C的弦长为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(m,0)作圆x2+y2=1的切线,交椭圆C于点A,B,求|AB|的最大值,并求取得最大值时m的值.
【答案】(1) (2) |AB|最大为,m=±1.
【解析】试题分析:(1)利用条件布列关于a,b方程组,即可得到椭圆C的方程;(2)讨论直线的斜率,进而联立方程,(1+2k2)x2-4k2mx+2k2m2-2=0,表示弦长,进而得到|AB|的最大值.
试题解析:
(Ⅰ)由e==,a2=b2+c2得a2=2c2,b2=c2,
由得
∵=b=,∴b=1,∴a=,
∴椭圆C的方程为+y2=1.
(Ⅱ)当AB与x轴垂直时,+y2=1,|y|=,|AB|=,
当AB与x轴不垂直时,
设AB方程为y=k(x-m),
由得(1+2k2)x2-4k2mx+2k2m2-2=0,
Δ>0时,设A(x1,y1),B(x2,y2),
则x1+x2=,x1x2=,
由=1得k2m2=k2+1,
∴|AB|==≤=,
当且仅当|m|=1时取“=”,∴|AB|<,
∴当AB⊥x轴时,|AB|最大为,m=±1.
【题目】某P2P平台需要了解该平台投资者的大致年龄分布,发现其投资者年龄大多集中在区间[20,50]岁之间,对区间[20,50]岁的人群随机抽取20人进行了一次理财习惯调查,得到如下统计表和各年龄段人数频率分布直方图:
组数 | 分组 | 人数(单位:人) |
第一组 | [20,25) | 2 |
第二组 | [25,30) | a |
第三组 | [30,35) | 5 |
第四组 | [35,40) | 4 |
第五组 | [40,45) | 3 |
第六组 | [45,50] | 2 |
(Ⅰ)求a的值并画出频率分布直方图;
(Ⅱ)在统计表的第五与第六组的5人中,随机选取2人,求这2人的年龄都小于45岁的概率.