题目内容

【题目】设平面向量 =(cosx,sinx), =(cosx+2 ,sinx), =(sinα,cosα),x∈R.
(1)若 ,求cos(2x+2α)的值;
(2)若α=0,求函数f(x)= 的最大值,并求出相应的x值.

【答案】
(1)

解:若 ,则 =0,

∴cosxsinα+sinxcosα=0,

∴sin(x+α)=0,

∴cos(2x+2α)=1﹣2sin2(x+α)=1.


(2)

若α=0, =(0,1),

则f(x)= =(cosx,sinx)(cosx+2 ,sinx﹣2)=cosx(cosx+2 )+sinx(sinx﹣2)=1﹣2sinx+2 cosx=1+4sin(x+ ),

所以,f(x)max=5,x=2kπ﹣ (k∈Z).


【解析】(1)利用两个向量垂直,它们的数量积等于0,以及二倍角的余弦公式求得cos(2x+2α)的值.(2)若α=0,则 =(0,1),由题意化简可得函数解析式:f(x)=1+4sin(x+ ),利用正弦函数的有界性求出函数的最值.
【考点精析】掌握两角和与差的余弦公式是解答本题的根本,需要知道两角和与差的余弦公式:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网