题目内容
【题目】在平面直角坐标系xOy中,圆C:x2+y2+4x-2y+m=0与直线相切.
(1)求圆C的方程;
(2)若圆C上有两点M,N关于直线x+2y=0对称,且,求直线MN的方程.
【答案】(1);(2)
【解析】
试题(1)利用圆心到直线的距离,求出半径,即可求圆的方程;(2)若圆上有两点,关于直线对称,则设方程为,利用,可得圆心到直线的距离,即可求直线的方程.
试题解析:(1)将圆C:x2+y2+4x-2y+m=0化为(x+2)2+(y-1)2=5-m,因为圆C:x2+y2+4x-2y+m=0与直线相切,所以圆心(-2,1)到直线的距离,所以圆C的方程为(x+2)2+(y-1)2=4.
(2)若圆C上有两点M,N关于直线x+2y=0对称,则可设直线MN的方程为2x-y+c=0,因为,半径r=2,所以圆心(-2,1)到直线MN的距离为,则,所以,所以直线MN的方程为.
练习册系列答案
相关题目