题目内容
18.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足Q?P,求a所取的一切值.分析 由Q⊆P,可分Q=∅和Q≠∅两种情况进行讨论,根据集合包含关系的判断和应用,分别求出满足条件的a值,并写成集合的形式即可得到答案.
解答 解:∵P={x|x2+x-6=0}={-3,2}
又∵Q?P
当a=0,ax+1=0无解,故Q=∅,满足条件
若Q≠∅,则Q={-3},或Q={2},
即a=$\frac{1}{3}$,或a=-$\frac{1}{2}$
故满足条件的实数a∈{0,$\frac{1}{3}$,-$\frac{1}{2}$}.
点评 本题考查的知识点是集合的包含关系判断及应用,本题有两个易错点,一是忽略Q=∅的情况,二是忽略题目要求求满足条件的实数a的取值集合,而把答案没用集合形式表示.
练习册系列答案
相关题目
3.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{x+y}{x+1}$的取值范围是( )
A. | [0,$\frac{4}{3}$] | B. | [$\frac{1}{2}$,2) | C. | [$\frac{1}{2}$,$\frac{4}{3}$] | D. | [$\frac{1}{2}$,+∞) |