题目内容
(本小题满分12分)
已知数列的前项和为,,,,其中为常数,
(I)证明:;
(II)是否存在,使得为等差数列?并说明理由.
(I)详见解析;(II)存在,.
解析试题分析:(I)对于含递推式的处理,往往可转换为关于项的递推式或关于的递推式.结合结论,该题需要转换为项的递推式.故由得.两式相减得结论;(II)对于存在性问题,可先探求参数的值再证明.本题由,,,列方程得,从而求出.得,故数列的奇数项和偶数项分别为公差为4的等差数列.分别求通项公式,进而求数列的通项公式,再证明等差数列.
试题解析:(I)由题设,,.两式相减得,.
由于,所以.
(II)由题设,,,可得,由(I)知,.令,解得.
故,由此可得,是首项为1,公差为4的等差数列,;
是首项为3,公差为4的等差数列,.
所以,.
因此存在,使得为等差数列.
【考点定位】1、递推公式;2、数列的通项公式;3、等差数列.
练习册系列答案
相关题目