题目内容
(本题16分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数。
(1)如果函数在上是减函数,在上是增函数,求的值。
(2)设常数,求函数的最大值和最小值;
(3)当是正整数时,研究函数的单调性,并说明理由解析:(1) 由已知得=4, ∴b=4. ………………3分
(2) ∵c∈[1,4], ∴∈[1,2],于是,当x=时, 函数f(x)=x+取得最小值2.
f(1)-f(2)=,
当1≤c≤2时, 函数f(x)的最大值是f(2)=2+;
当2≤c≤4时, 函数f(x)的最大值是f(1)=1+c. ………………8分
(3)设0
当
当0
当n是奇数时,g(x)是奇函数,
函数g(x) 在(-∞,-]上是增函数, 在[-,0)上是减函数.
当n是偶数时, g(x)是偶函数,
函数g(x)在(-∞,-)上是减函数, 在[-,0]上是增函数.………………16分
练习册系列答案
相关题目