题目内容
【题目】已知函数是定义在上的奇函数,且在区间上单调递减,.设,则满足的的取值范围是
A. B. C. D.
【答案】C
【解析】
根据题意,由函数奇偶性的性质可得f(x)在R上为减函数以及f(﹣1)=1,结合对数函数的性质可得g(x)=log2(x+3)的定义域为(﹣3,+∞),在其定义域上,g(x)为增函数,设F(x)=f(x)﹣g(x),易得F(x)在(﹣3,+∞)上为减函数,又由F(﹣1)=f(﹣1)﹣g(﹣1)=1﹣1=0,进而可得F(x)≥0﹣3<x≤﹣1,据此分析可得答案.
根据题意,函数f(x)是定义在R上的奇函数,且在区间(﹣∞,0]上单调递减,
则f(x)在[0,+∞)上也是减函数,
则f(x)在R上为减函数,
又由f(1)=﹣1,则f(﹣1)=﹣f(1)=1,
又由g(x)=log2(x+3),有x+3>0,即x>﹣3,函数的定义域为(﹣3,+∞),在其定义域上,g(x)为增函数,
设F(x)=f(x)﹣g(x),其定义域为(﹣3,+∞),
分析易得F(x)在(﹣3,+∞)上为减函数,又由F(﹣1)=f(﹣1)﹣g(﹣1)=1﹣1=0,
F(x)≥0﹣3<x≤﹣1,
则f(x)≥g(x)F(x)≥0﹣3<x≤﹣1,即不等式的解集为(﹣3,﹣1];
故选:C.
【题目】“双十一网购狂欢节”源于淘宝商城(天猫)年月日举办的促销活动,当时参与的商家数量和促销力度均有限,但营业额远超预想的效果,于是月日成为天猫举办大规模促销活动的固定日期.如今,中国的“双十一”已经从一个节日变成了全民狂欢的“电商购物日”.某淘宝电商为分析近年“双十一”期间的宣传费用(单位:万元)和利润(单位:十万元)之间的关系,搜集了相关数据,得到下列表格:
(万元) | ||||||||
(十万元) |
(1)请用相关系数说明与之间是否存在线性相关关系(当时,说明与之间具有线性相关关系);
(2)建立关于的线性回归方程(系数精确到),预测当宣传费用为万元时的利润.
附参考公式:回归方程中和最小二乘估计公式分别为
,,相关系数
参考数据:,,,