题目内容
【题目】几何体ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面棱A1B1、B1C1的中点,P是上底面棱AD上的一点,,过P、M、N三点的平面交上底面于PQ, Q在CD上,则PQ等于( )
A. B. C. D.
【答案】B
【解析】
由题设PQ在直角三角形PDQ中,故需要求出PD,QD的长度,用勾股定理在直角三角形PDQ中求PQ的长度.
:∵平面ABCD∥平面A1B1C1D1,MN平面A1B1C1D1
∴MN∥平面ABCD,又PQ=面PMN∩平面ABCD,
∴MN∥PQ.
∵M、N分别是A1B1、B1C1的中点
∴MN∥A1C1∥AC,
∴PQ∥AC,又,ABCD-A1B1C1D1是棱长为a的正方体,
∴ ,从而 ,
∴
故选B.
练习册系列答案
相关题目