题目内容
【题目】袋中装有10个除颜色外完全一样的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是.
(1)求白球的个数;
(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.
【答案】(1)5个;(2)见解析.
【解析】
(1)设白球的个数为x,则黑球的个数为10﹣x,记“从袋中任意摸出2个球,至少得到1个白球”为事件A,则两个都是黑球与事件A为对立事件,由此能求出白球的个数;(2)随机变量X的取值可能为:0,1,2,3,分别求出相应的概率,由此能求出X的分布列.
(1)设白球的个数为x,则黑球的个数为10﹣x,记“从袋中任意摸出2个球,至少得到1个白球”为事件A,则,解得.故白球有5个.
(2)X服从以10,5,3为参数的超几何分布,.
于是可得其分布列为:
【题目】某工厂生产,,三种纪念品,每种纪念品均有普通型和精品型两种,某一天产量如下表(单位:个):
普通型 | 精品型 | |
纪念品 | 800 | 200 |
纪念品 | 150 | |
纪念品 | 500 | 350 |
现采用分层抽样的方法在这一天生产的纪念品中抽取100个,其中有种纪念品40个.
(1)若再用分层抽样的方法在所有种纪念品中抽取一个容量为13的样本.将该样本看成一个总体,从中任取2个纪念品,求至少有1个精品型纪念品的概率(用最简分数表示);
(2)从种精品型纪念品中抽取6个,其某种指标的数据分别如下:4,7,,,8,5.把这6个数据看作一个总体,其均值为7、方差为6,求的值.
【题目】为了解某冷饮店的经营状况,随机记录了该店月的月营业额(单位:万元)与月份的数据,如下表:
(1)求关于的回归直线方程;
(2)若在这样本点中任取两点,求恰有一点在回归直线上的概率.
附:回归直线方程中,
,.
【题目】某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )
表1 | 表2 | 表3 | |||||||||||||
语文 性别 | 不及格 | 及格 | 总计 | 数学 性别 | 不及格 | 及格 | 总计 | 英语 性别 | 不及格 | 及格 | 总计 | ||||
男 | 14 | 36 | 50 | 男 | 10 | 40 | 50 | 男 | 25 | 25 | 50 | ||||
女 | 16 | 34 | 50 | 女 | 20 | 30 | 50 | 女 | 5 | 45 | 50 | ||||
总计 | 30 | 70 | 100 | 总计 | 30 | 70 | 100 | 总计 | 30 | 70 | 100 | ||||
A.语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小
B.数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小
C.英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小
D.英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小