题目内容
【题目】已知函数f(x)=x2﹣ax+b(a>0,b>0)有两个不同的零点m,n,且m,n和﹣2三个数适当排序后,即可成为等差数列,也可成为等比数列,则a+b的值为( )
A.7
B.8
C.9
D.10
【答案】C
【解析】解:由题意可得:m+n=a,mn=b,
∵a>0,b>0,
可得m>0,n>0,
又m,n,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,
可得 ①或 ②.
解①得:m=4,n=1;解②得:m=1,n=4.
∴a=5,b=4,
则a+b=9.
故选:C.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.
练习册系列答案
相关题目
【题目】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) | |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(13分)
(I)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?