题目内容

已知抛物线C:y2=4x的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点(A在M、B之间).
(1)F为抛物线C的焦点,若|AM|=
54
|AF|,求k的值;
(2)如果抛物线C上总存在点Q,使得QA⊥QB,试求k的取值范围.
分析:(1)法一:先求出点M的坐标,再求出|AM|和|AF|利用|AM|=
5
4
|AF|,求出k的值;
法二:利用抛物线的定义把|AF|的长转化为点A到准线的距离,再利用直线的倾斜角与|AM|和点A到准线的距离之间的关系求k的值;
(2)先把直线方程与抛物线方程联立消去x,得到关于A、B两点纵坐标之间的关系式再利用QA⊥QB,找到k的取值范围.(注意检验是否满足判别式).
解答:解:(1)法一:由已知M(-1,0)(1分)
设A(x1,y1),则|AM|=
1+k2
|x1+1|
,(1分)
|AF|=
(x1-1)2+
y
2
1

=
(x1-1)2+4x1

=|x1+1|,(1分)
由4|AM|=5|AF|得,4
1+k2
=5,
解得k=±
3
4
(2分)
法二:记A点到准线距离为d,直线l的倾斜角为a,
由抛物线的定义知|AM|=
5
4
d,(2分)
∴cosa=±
d
|AM|
4
5

∴k=tana=±
3
4
(3分)
(2)设Q(x0,y0),A(x1,y1),B(x2,y2
y2=4x
y=k(x+1)
得ky2-4y+4k=0,(1分)
首先由
k≠0
16-16k2>0
得-1<k<1且k≠0
kQA=
y0-y1
x0-x1
=
y0-y1
y
 2
0
4
-
y
  2
1
4
=
4
y0+y1

同理kQB=
4
y0+y2
(2分)
由QA⊥QB得
4
y0+y1
4
y0+y2
=-1
,(2分)
即:y02+y0(y1+y2)+y1y2=-16,
y
 2
0
+
4
k
y0+20=0
,(2分)
△=(
4
k
)
2
-80≥0,得-
5
5
≤k≤
5
5
且k≠0,
由-1<k<1且k≠0得,
k的取值范围为[-
5
5
,0)∪(0,
5
5
](3分)
点评:本题考查抛物线的应用以及直线间的位置关系.在解决圆锥曲线问题时,定义法是比较常用的.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网