题目内容
(本小题满分12分)已知椭圆
的离心率为
,
在椭圆C上,A,B为椭圆C的左、右顶点.
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线
相交于M1,M2.问是否存在x轴上定点D,使得以M1M2为直径的圆恒过点D?若存在,求点D的坐标:若不存在,说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321256011166.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125617338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125632649.png)
(1)求椭圆C的方程:
(2)若P是椭圆上异于A,B的动点,连结AP,PB并延长,分别与右准线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125632280.png)
(1)
(2)存在
或
,使得以
为直径的圆恒过点![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125648707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125679506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125695527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125695532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
试题分析:(1)因为离心率为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125617338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125632649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125757283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125773299.png)
(2)通过假设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125788289.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125804510.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125851529.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125866507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125882445.png)
试题解析:(1)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125897439.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125913429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125929495.png)
从而有:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321259441121.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125960646.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125975313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125991788.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126007304.png)
所以,椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125975313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125648707.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126053616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126069945.png)
则直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126069377.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126085844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126100368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126116709.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321261471003.png)
同理得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126163987.png)
假设存在点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126178522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125695532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126209256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126225773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126209256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126256768.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321262721055.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126287611.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125975313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126319752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126334774.png)
代入上式得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126365946.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032126381318.png)
所以,存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125679506.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125695527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125695532.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032125710315.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目