题目内容
【题目】已知随机变量的取值为不大于的非负整数值,它的分布列为:
0 | 1 | 2 | n | ||
其中()满足: ,且.
定义由生成的函数,令.
(I)若由生成的函数,求的值;
(II)求证:随机变量的数学期望, 的方差;
()
(Ⅲ)现投掷一枚骰子两次,随机变量表示两次掷出的点数之和,此时由生成的函数记为,求的值.
【答案】(1) ;(2)详见解析;(3)441.
【解析】试题分析:本题为新定义信息题,根据知: ,而,则 ;根据数学期望公式写出 ,由于,求出的表达式,根据方差公式写出 并推到证明;第三步写出的取值2,3,4.,……12,求出相应的概率,写出函数 并求出的值.
试题解析:(I) .
(II)由于,
,
所以.
由的方差定义可知
由于,所以有
,这样
,所以有
.
(III)方法1.投掷一枚骰子一次,随机变量的生成的函数为:
.
投掷骰子两次次对应的生成函数为: .
所以.
方法2: 的取值为2,3,4,5,6,7,8,9,10,11,12.
则的分布列为
2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
.
则
.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.