题目内容
【题目】设函数 .
(1)求f(x)的单调区间及最大值;
(2)讨论关于x的方程|lnx|=f(x)根的个数.
【答案】
(1)解:∵ = ,解f′(x)>0,得 ;解f′(x)<0,得 .
∴函数f(x)的单调递增区间为 ;单调递减区间为 .
故f(x)在x= 取得最大值,且
(2)解:函数y=|lnx|,当x>0时的值域为[0,+∞).如图所示:
①当0<x≤1时,令u(x)=﹣lnx﹣ ﹣c,
c= =g(x),
则 =- .
令h(x)=e2x+x﹣2x2,则h′(x)=2e2x+1﹣4x>0,∴h(x)在x∈(0,1]单调递增,
∴1=h(0)<h(x)≤h(1)=e2﹣1.
∴g′(x)<0,∴g(x)在x∈(0,1]单调递减.
∴c .
②当x≥1时,令v(x)=lnx﹣ -c,得到c=lnx﹣ =m(x),
则 = >0,
故m(x)在[1,+∞)上单调递增,∴c≥m(1)= .
综上①②可知:当 时,方程|lnx|=f(x)无实数根;
当 时,方程|lnx|=f(x)有一个实数根;
当 时,方程|lnx|=f(x)有两个实数根.
【解析】(1)利用导数的运算法则求出f′(x),分别解出f′(x)>0与f′(x)<0即可得出单调区间及极值与最值;(2)分类讨论:①当0<x≤1时,令u(x)=﹣lnx﹣ ﹣c,②当x≥1时,令v(x)=lnx﹣ -c.利用导数分别求出c的取值范围,即可得出结论.
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 | ||||||
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外体育锻炼时间在的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面的列联表;
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)通过计算判断是否能在犯错误的概率不超过的前提下认为“课外体育达标”性别有关?
参考公式,其中
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
经计算的观测值. 参照附表,得到的正确结论是
附表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
A. 有99%以上的把握认为“爱好该项运动与性别有关”
B. 有99%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”