题目内容

【题目】如图,在同一个平面内,向量 的模分别为1,1, 的夹角为α,且tanα=7, 的夹角为45°.若 =m +n (m,n∈R),则m+n=

【答案】3
【解析】解:如图所示,建立直角坐标系.A(1,0).
的夹角为α,且tanα=7.
∴cosα= ,sinα=
∴C
cos(α+45°)= (cosα﹣sinα)=
sin(α+45°)= (sinα+cosα)=
∴B
=m +n (m,n∈R),
=m﹣ n, =0+ n,
解得n= ,m=
则m+n=3.
故答案为:3.

如图所示,建立直角坐标系.A(1,0).由 的夹角为α,且tanα=7.可得cosα= ,sinα= .C .可得cos(α+45°)= .sin(α+45°)= .B .利用 =m +n (m,n∈R),即可得出.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网