题目内容

如图,多面体PABCD的直观图及三视图如图所示,E、F分别为PC、BD的中点.

(1)求证:EF∥平面PAD;

(2)求证:平面PDC⊥平面PAD.

答案:
解析:

  证明:由多面体PABCD的三视图知,四棱锥P-ABCD的底面ABCD是边长为2的正方形,侧面PAD是等腰三角形,

  且平面PAD⊥平面ABCD  2分

  (1)连结AC,则F是AC的中点,在△CPA中,EF∥PA  4分

  且PA平面PAD,EF平面PAD,

  ∴EF∥平面PAD  6分

  (2)因为平面PAD⊥平面ABCD,

  平面PAD∩平面ABCD=AD,

  又CD⊥AD,所以,CD⊥平面PAD,

  ∴CD⊥PA  8分

  又,AD=2,所以△PAD是等腰直角三角形,

  且,即PA⊥PD  10分

  又CD∩PD=D,

  ∴PA⊥平面PDC,

  又PA平面PAD,

  所以平面PAD⊥平面PDC  12分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网