题目内容

(2012•海淀区一模)以抛物线y2=4x上的点(x0,4)为圆心,并过此抛物线焦点的圆的方程是
(x-4)2+(y-4)2=25
(x-4)2+(y-4)2=25
分析:先根据抛物线的方程求得其焦点的坐标,把y=4代入抛物线方程求得圆心的坐标,进而求得圆的直径,进而求得圆的方程.
解答:解:∵y2=4x,
∴p=2,焦点F(1,0),
把y=4代入抛物线方程求得x0=4,
得圆心P(4,4)
∴圆的半径r=
32+42
=5
∴所求圆的方程为(x-4)2+(y-4)2=25.
故答案为:(x-4)2+(y-4)2=25.
点评:本题以抛物线为载体,主要考查了抛物线的简单性质,抛物线与圆的关系.考查了学生对抛物线和圆的标准方程知识点的熟练掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网