题目内容

(本题满分12分)已知定义域为(0,+∞)的函数f(x)满足:
①x>1时,f(x)<0,②f()=1,③对任意x,y( 0,+∞),
都有f(xy)= f(x)+ f(y),求不等式f(x)+ f(5-x)≥-2的解集。

试题分析:(1)构造函数中两个任意变量的函数值差,结合函数表达式得到函数单调性的证明。
(2)结合特殊值的函数值,得到f(4)=-2,进而得到函数的不等式的求解。
解:设0<x1<x2,则>1,∵f(xy)= f(x)+ f(y)
∴f(x2)= f()= f()+ f(x1
又∵x>1时,f(x)<0,∴f()<0
∴f(x2)<f(x1),∴f(x)是( 0,+∞)上的减函数。又∵f(1)= f(1)+ f(1)
∴f(1)=0,而f()=1,∴f(2?)= f(2)+ f()=0
∴f(2)=-1,∴f(x)+ f(5-x)≥-2="2" f(2)= f(4)
,∴0<x≤1,或4≤x<5
∴原不等式的解集是
点评:解决该试题的关键是能利用已知条件分析得到函数的单调性的证明,结合已知的关系式将所求的表示为一个整体函数式,同时能结合单调性得到求解。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网