题目内容
7.二次函数f(x)=ax2+bx+c,a∈N*,c≥1,a+b+c≥1,方程ax2+bx+c=0有两个小于1的不等正根,则a的最小值为( )A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 将二次函数f(x)设成两根式形式,根据条件写出两根式形式的关系式,将a分离出来,然后利用基本不等式求出最值即可.
解答 解:设f(x)=a(x-p)(x-q),其中p,q属于(0,1)且p不等于q.
由f(0)≥1及f(1)≥1,可得:apq≥1,a(1-p)(1-q)≥1,
两式相乘有a2p(1-p)q(1-q)≥1,即a2≥$\frac{1}{p(1-p)q(1-q)}$,
又由基本不等式可得:p(1-p)q(1-q)≤( $\frac{p+1-p}{2}$)2•( $\frac{q+1-q}{2}$)2=$\frac{1}{16}$,
由于上式取等号当且仅当p=q=$\frac{1}{2}$与已知矛盾,故上式的等号取不到,
故p(1-p)q(1-q)<$\frac{1}{16}$,因此得到a2>16即a>4,
所以函数f(x)=5x2-5x+1满足题设的所有条件,
因此a的最小值为5.
故选:C.
点评 本题主要考查了函数与方程的综合运用,以及根的分布问题,本题解题的关键是熟练应用基本不等式求最值,属于中档题目.
练习册系列答案
相关题目
2.集合I={0,1,2,3,4,5,6,7,8,9},从集合I中取5个元素,设A={至少两个偶数},则A的对立事件为( )
A. | {至多两个偶数} | B. | {至多两个奇数} | C. | {至少两个奇数} | D. | {至多一个偶数} |
12.从一群游戏的小孩中抽出k人,一人分一个苹果,让他们返回继续游戏,一段时间后,再从中任取m人,发现其中有n个小孩曾分过苹果,估计一共有小孩多少人( )
A. | k•$\frac{m}{n}$ | B. | k•$\frac{n}{m}$ | C. | k+m-n | D. | 不能估计 |
19.某市调研后对甲、乙两个文科班的数学考试成绩进行分析,规定:大于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的2×2列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲方班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次掷一枚均匀的骰子,出现点数之和为被抽取人的序号.试求抽到9号或10号的概率.
附:参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
优秀 | 非优秀 | 合计 | |
甲班 | 10 | ||
乙班 | 30 | ||
合计 | 110 |
(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲方班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次掷一枚均匀的骰子,出现点数之和为被抽取人的序号.试求抽到9号或10号的概率.
附:参考公式:x2=$\frac{n(ad-bc)^{2}}{(a+b)(b+c)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 |
k | 1.323 | 2.072 | 2.706 | 3.845 | 6.635 | 7.879 |
17.如果把一个球的表面积扩大到原来的2倍,变为一个新球,那么新球的体积扩大到原来的λ倍,则( )
A. | λ∈(0,1) | B. | λ∈(1,2) | C. | λ∈(2,3) | D. | λ∈(3,4) |