题目内容

【题目】如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点.

1)求证:

2)若平面,求二面角的大小.

3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC?若存在,求SE∶EC的值;若不存在,试说明理由.

【答案】(1)详见解析(230°3SE∶EC2∶1

【解析】试题分析:(1)连BD,设AC交于BDO,由题意知SO⊥平面ABCD.以O为坐标原点,分别为x轴、y轴、z轴正方向,建立坐标系O-xyz,设底面边长为a,求出高SO,从而得到点S与点CD的坐标,求出向量,计算它们的数量积,从而证明出OC⊥SD,则AC⊥SD;(2)根据题意先求出平面PAC的一个法向量和平面DAC的一个法向量,设所求二面角为θ,则,从而求出二面角的大小;(3)在棱SC上存在一点E使BE∥平面PAC,根据()知是平面PAC的一个法向量,设,求出,根据可求出t的值,从而即当SEEC=21时,,而BE不在平面PAC内,故BE∥平面PAC

试题解析:(1)证明:连BD,设ACBDO,由题意SO⊥AC.在正方形ABCD中,AC⊥BD,所以AC⊥平面SBD,得AC⊥SD

2)设正方形边长a,则

,所以∠SDO60°

OP,由(1)知AC⊥平面SBD,所以AC⊥OP,且AC⊥OD.所以∠POD是二面角PACD的平面角.

SD⊥平面PAC,知SD⊥OP,所以∠POD30°

即二面角PACD的大小为30°

3)在棱SC上存在一点E,使BE∥平面PAC

由(2)可得,故可在SP上取一点N,使PNPD.过NPC的平行线与SC的交点即为E.连BN,在△BDN中知BN∥PO

又由于NE∥PC,故平面BEN∥平面PAC,得BE∥平面PAC

由于SN∶NP2∶1,故SE∶EC2∶1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网