题目内容

【题目】已知⊙O:x2+y2=1和点M(4,2).
(Ⅰ)过点M向⊙O引切线l,求直线l的方程;
(Ⅱ)求以点M为圆心,且被直线y=2x﹣1截得的弦长为4的⊙M的方程;
(Ⅲ)设P为(Ⅱ)中⊙M上任一点,过点P向⊙O引切线,切点为Q.试探究:平面内是否存在一定点R,使得 为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.

【答案】解:(Ⅰ)由⊙O:x2+y2=1得到圆心O(0,0)半径r=1,
设切线l方程为y﹣2=k(x﹣4),
易得 ,解得
∴切线l方程为
(Ⅱ)圆心M到直线y=2x﹣1的距离d= =
设圆的半径为r,则
∴⊙M的方程为(x﹣4)2+(y﹣2)2=9;
(Ⅲ)假设存在这样的点R(a,b),点P的坐标为(x,y),相应的定值为λ,
根据题意可得

即x2+y2﹣1=λ2(x2+y2﹣2ax﹣2by+a2+b2)(*),
又点P在圆上∴(x﹣4)2+(y﹣2)2=9,
即x2+y2=8x+4y﹣11,代入(*)式得:
8x+4y﹣12=λ2[(8﹣2a)x+(4﹣2b)y+(a2+b2﹣11)],
若系数对应相等,则等式恒成立,∴
解得
∴可以找到这样的定点R,使得 为定值.
如点R的坐标为(2,1)时,比值为 ;点R的坐标为 时,比值为
【解析】(Ⅰ)找出圆的圆心坐标和半径,设切线方程的斜率为k,由M的坐标和k写出切线l的方程,然后利用点到直线的距离公式表示出圆心到直线l的距离d让d等于半径r得到关于k的方程,求出方程的解即可得到k的值,写出直线l的方程即可;(Ⅱ)根据点到直线的距离公式求出M到已知直线的距离d,然后利用勾股定理即可求出圆M的半径,根据圆心和半径写出圆的标准方程即可;(Ⅲ)假设存在这样的R点,设出R的坐标,并设出P的坐标,根据圆的切线垂直于过切点的半径得到三角形OPQ为直角三角形,根据勾股定理表示出PQ的长,然后利用两点间的距离公式表示出PR的长,设PQ与PR之比等于λ,把PQ和PR的式子代入后两边平方化简得到一个关系式记作(*),又因为P在⊙M上,所以把P的坐标当然到⊙M的方程中,化简后代入到(*)中,根据多项式对应项的系数相等即可求出R的坐标和λ的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网