题目内容

在△ABC中,若acosA=bcosB,则△ABC的形状是(  )
A、等腰三角形B、直角三角形C、等腰直角三角形D、等腰或直角三角形
分析:利用正弦定理化简已知的等式,再根据二倍角的正弦函数公式变形后,得到sin2A=sin2B,由A和B都为三角形的内角,可得A=B或A+B=90°,从而得到三角形ABC为等腰三角形或直角三角形.
解答:解:由正弦定理asinA=bsinB化简已知的等式得:sinAcosA=sinBcosB,
1
2
sin2A=
1
2
sin2B,
∴sin2A=sin2B,又A和B都为三角形的内角,
∴2A=2B或2A+2B=π,即A=B或A+B=
π
2

则△ABC为等腰或直角三角形.
故选D
点评:此题考查了三角形形状的判断,涉及的知识有正弦定理,二倍角的正弦函数公式,以及正弦函数的图象与性质,其中正弦定理很好得解决了三角形的边角关系,利用正弦定理化简已知的等式是本题的突破点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网