题目内容
设函数的定义域为D,如果对于任意的,存在唯一的,使(c为常数)成立,则称函数在D上的均值为c.下列五个函数:①②③④⑤满足在其定义域上均值为2的所有函数的序号是 .
②③⑤
解析试题分析:对于函数①y=4sinx,明显不成立,因为y=4sinx是R上的周期函数,存在无穷个的x2∈D,使成立.故不满足条件;对于函数②y=x3,取任意的x1∈R,,可以得到唯一的x2∈D.故满足条件;对于函数③y=lgx,定义域为x>0,值域为R且单调,显然必存在唯一的x2∈D,使成立.故成立;对于函数④y=2x定义域为R,值域为y>0.对于x1=3,f(x1)=8.要使成立,则f(x2)=-4,不成立;对于函数⑤y=2x-1定义域为任意实数,取任意的x1∈R,,解得x2=3-x1,可以得到唯一的x2∈R.故成立,
故答案为:②③⑤.
考点:考查均值不等式在函数中的应用
练习册系列答案
相关题目