题目内容
【题目】保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):
已知三类工种职工每人每年需交的保费分别为25元25元40元,出险后的赔偿金额分别为100万元100万元50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(1)设A类工种职工的每份保单保险公司的收益为随机变量X(元),求X的数学期望;
(2)若该公司全员参加保险,求保险公司该业务所获利润的期望值;
(3)现有如下两个方案供企业选择:
方案1:企业不与保险公司合作,职工不交保险,若出意外,企业自行拿出与保险公司提供的等额赔偿金赔付给出意外职工,且企业开展这项工作每年还需另外固定支出12万元;
方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.
请根据企业成本差异给出选择合适方案的建议.
【答案】(1).(2)9万元.(3)建议企业选择方案2
【解析】
(1)每份保单保险公司的收益分为不出险的保费25元和出险后的元,列出分布列,进而求得期望;
(2)分别列出,类工种职工的每份保单保险公司的收益的分布列,并求出期望,再根据员工人数求得保险公司的利润的期望值;
(3)分别求得两种方案企业的成本,比较大小,即可选择.
(1)X的分布列为:
X | 25 | |
P |
;
(2)设BC类工种职工的每份保单保险公司的收益为随机变量YZ(元),
则YZ的分布列分别为:
Y | 25 | ||||
P | |||||
Z | 40 | ||||
P | |||||
;
;
保险公司的利润的期望值为:
,
所以保险公司在该业务所获利润的期望值为9万元.
(3)方案1:企业不与保险公司合作,则企业每年赔付支出与固定开支共为:
,
方案2:企业与保险公司合作,则企业支出保险金额为:
,
,故建议企业选择方案2.
【题目】某学校为了了解该校高三年级学生寒假在家自主学习的情况,随机对该校300名高三学生寒假的每天学习时间(单位:h)进行统计,按照,,,,的分组作出频率分布直方图如图所示.
(Ⅰ)根据频率分布直方图计算该校高三年级学生的平均每天学习时间(同一组中的数据用该组区间中点值代表);
(Ⅱ)该校规定学习时间超过4h为合格,否则不合格.已知这300名学生中男生有140人,其中合格的有70人,请补全下表,根据表中数据,能否有99.9%的把握认为该校高三年级学生的性别与学习时长合格有关?
男生 | 女生 | 总计 | |
不合格 | |||
合格 | 70 | ||
总计 | 140 | 160 | 300 |
参考公式:,其中.
参考附表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |