题目内容

已知P是△ABC所在平面α外一点,且PA=PB=PC,则P在α上的射影一定是△ABC的( )
A.内心
B.外心
C.重心
D.垂心
【答案】分析:点P在平面ABC上的射为O,利用已知条件,证明OA=OB=OC,推出结论.
解答:解:设点P作平面ABC的射影O,由题意:PA=PB=PC,因为PO⊥底面ABC,
所以△PAO≌△POB≌△POC
即:OA=OB=OC
所以O为三角形的外心.
故选B.
点评:本题考查棱锥的结构特征,考查逻辑思维能力,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网