题目内容

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

【答案】(1) .

(2)1.

【解析】分析第一问根据椭圆上的点到焦点的距离的最大值和最小值分别是,结合已知条件,建立关于的方程组,从而求得的值,借助于椭圆中之间的关系,求得的值,从而求得椭圆的方程第二问设出直线的方程,将其与椭圆联立,写出两根和与两根积,根据条件,确定出斜率的值,之后将面积转化为关于b的式子,利用二次函数的最值求得结果.

详解:(I)由已知得:

椭圆方程为

(II)设(易知存在斜率,且),设

由条件知:

联立(1)(2)得:

到直线的距离

所以当时:

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网