题目内容
【题目】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为,,,,由此得到样本的重量频率分布直方图(如图).
(Ⅰ)求的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;
(Ⅱ)从盒子中随机抽取个小球,其中重量在内的小球个数为,求的分布列和数学期望. (以直方图中的频率作为概率).
【答案】(Ⅰ),众数20,平均数24.6;(Ⅱ)分布列见解析,期望为.
【解析】
试题分析:(Ⅰ)由频率分布直方图中所有小矩形面积(频率)之和为1,可计算出,众数取频率最大即矩形最高的那个矩形的中点横坐标,平均值用各矩形中点值乘频率相加即得;(Ⅱ)的可能取值为、、、,利用样本估计总体,该盒子中小球重量在内的概率为,因此有,从而可得分布列,最后由期望公式可计算出期望.
试题解析:(Ⅰ)由题意,得,
解得;
又由最高矩形中点的的横坐标为20,可估计盒子中小球重量的众数约为20(克)
而个样本小球重量的平均值为:(克)
故由样本估计总体,可估计盒子中小球重量的平均值约为克;
(Ⅱ)利用样本估计总体,该盒子中小球重量在内的概率为
则.的可能取值为、、、,
,,
,.
的分布列为:
.(或者)
练习册系列答案
相关题目