题目内容

【题目】某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本C(x),当年产量不足80千件时,C(x)= x2+10x(万元);当年产量不小于80千件时C(x)=51x+ ﹣1450(万元),通过市场分析,若每件售价为500元时,该厂本年内生产该商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获的利润最大?

【答案】
(1)解:∵每件商品售价为0.05万元,

∴x千件商品销售额为0.05×1000x万元,

①当0<x<80时,根据年利润=销售收入﹣成本,

∴L(x)=(0.05×1000x)﹣ ﹣10x﹣250=﹣ +40x﹣250;

②当x≥80时,根据年利润=销售收入﹣成本,

∴L(x)=(0.05×1000x)﹣51x﹣ +1450﹣250=1200﹣(x+ ).

综合①②可得,L(x)=


(2)解:①当0<x<80时,L(x)=﹣ +40x﹣250=﹣ +950,

∴当x=60时,L(x)取得最大值L(60)=950万元;

②当x≥80时,L(x)=1200﹣(x+ )≤1200﹣2 =1200﹣200=1000,

当且仅当x= ,即x=100时,L(x)取得最大值L(100)=1000万元.

综合①②,由于950<1000,

∴年产量为100千件时,该厂在这一商品的生产中所获利润最大


【解析】(1)根据题意对x进行分段,列出相应的函数解析式即可,(2)分别在分段中求出函数的最大值,分析可得所获利润最大时的年产量.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网