题目内容
已知为坐标原点,=(),=(1,), .
(1)若的定义域为[-,],求y=的单调递增区间;
(2)若的定义域为[,],值域为[2,5],求的值.
(1)[,],[,] (2)m=1
解析试题分析:(1)先利用向量的数量积公式计算出f(x),然后利用降幂公式、辅助角公式化简得到f(x)
=,进而得到单调区间.(2)找到定义域与值域的对应关系,然后解方程组.
(1)∵=
== (4分)
由(k∈Z),
得在上的单调递增区间为(k∈Z),
(其它情况可酌情给分)
又的定义域为[-,],
∴的增区间为:[,],[,] (7分)
(2)当≤x≤时,,∴,
∴1+m≤≤4+m,∴m=1 (13分)
考点:向量的数量积的坐标表示;两角和的正弦公式;正弦函数的单调性以及值域.
练习册系列答案
相关题目