题目内容

15、在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A-BCD的三个侧面ABC、ACD、ADB两两互相垂直,则
S△ABC2+S△ACD2+S△ADB2=S△BCD2
.”
分析:从平面图形到空间图形的类比
解答:解:建立从平面图形到空间图形的类比,于是作出猜想:S△ABC2+S△ACD2+S△ADB2=S△BCD2
故答案为:S△ABC2+S△ACD2+S△ADB2=S△BCD2
点评:本题主要考查学生的知识量和知识的迁移类比等基本能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网