ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©ÔÚÆ䶨ÒåÓòÉÏÂú×ãxf£¨x£©+2af£¨x£©=x+a-1£¨a£¾0£©£®
£¨1£©º¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñÊÇÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÖ¸³öÆä¶Ô³ÆÖÐÐÄ£¨²»Ö¤Ã÷£©£»
£¨2£©µ±f(x)¡Ê[
£¬
]ʱ£¬ÇóxµÄÈ¡Öµ·¶Î§£»
£¨3£©Èôf£¨0£©=0£¬ÊýÁÐ{an}Âú×ãa1=1£¬ÄÇô£º
¢ÙÈô0£¼an+1¡Üf£¨an£©£¬ÕýÕûÊýNÂú×ãn£¾Nʱ£¬¶ÔËùÓÐÊʺÏÉÏÊöÌõ¼þµÄÊýÁÐ{an}£¬an£¼
ºã³ÉÁ¢£¬Çó×îСµÄN£»
¢ÚÈôan+1=f£¨an£©£¬ÇóÖ¤£ºa1a2+a2a3+a3a4+¡+anan+1£¼
£®
£¨1£©º¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñÊÇÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÖ¸³öÆä¶Ô³ÆÖÐÐÄ£¨²»Ö¤Ã÷£©£»
£¨2£©µ±f(x)¡Ê[
1 |
2 |
4 |
5 |
£¨3£©Èôf£¨0£©=0£¬ÊýÁÐ{an}Âú×ãa1=1£¬ÄÇô£º
¢ÙÈô0£¼an+1¡Üf£¨an£©£¬ÕýÕûÊýNÂú×ãn£¾Nʱ£¬¶ÔËùÓÐÊʺÏÉÏÊöÌõ¼þµÄÊýÁÐ{an}£¬an£¼
1 |
10 |
¢ÚÈôan+1=f£¨an£©£¬ÇóÖ¤£ºa1a2+a2a3+a3a4+¡+anan+1£¼
3 |
7 |
·ÖÎö£º£¨1£©ÒÀÌâÒâÓУ¨x+2a£©f£¨x£©=x+a-1£®Èôx=-2a£¬µÃa=-1£¬ÕâÓëa£¾0ì¶Ü£¬¹Êx¡Ù-2a£¬ËùÒÔf(x)=
=1-
(x¡Ù-2a)£¬ÓÉ´ËÖªy=f£¨x£©µÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬²¢ÄÜÇó³öÆä¶Ô³ÆÖÐÐÄ£®
£¨2£©ÓÉf(x)¡Ê[
£¬
]£¬Öª
£¬ÓÉa£¾0£¬ÄÜÇó³öxµÄÈ¡Öµ·¶Î§£®
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬¹Êf(x)=
£®ÓÉ0£¼an+1¡Ü
£¬µÃ
+1¡Ý2(
+1)£®Áîbn=
+1£¬Ôòbn+1¡Ý2bn£¬ÓÉ´ËÄÜÇóÍƵ¼³öÂú×ãÌâÉèÒªÇóµÄ×îСÕýÕûÊý£®
¢ÚÓÉan=
£¬Öªanan+1=
£¬a1a2=
£¼
£¬a1a2+a2a3=
+
=
£¼
£¬¹Êµ±n=1£¬2ʱ£¬²»µÈʽ³ÉÁ¢£®µ±n¡Ý2ʱ£¬ÓÉ
=
=
•
£¼
£¬Äܹ»Ö¤Ã÷a1a2+a2a3+a3a4+¡+anan+1£¼
£®
x+a-1 |
x+2a |
a+1 |
x+2a |
£¨2£©ÓÉf(x)¡Ê[
1 |
2 |
4 |
5 |
|
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬¹Êf(x)=
x |
x+2 |
an |
an+2 |
1 |
an+1 |
1 |
an |
1 |
an |
¢ÚÓÉan=
1 |
2n-1 |
1 |
(2n-1)•(2n+1-1) |
1 |
3 |
3 |
7 |
1 |
3 |
1 |
21 |
16 |
42 |
3 |
7 |
anan+1 |
an-1an |
2n-1-1 |
2n+1-2 |
1 |
2 |
2n-1-1 |
2n-1 |
1 |
2 |
3 |
7 |
½â´ð£º½â£º£¨1£©ÒÀÌâÒâÓУ¨x+2a£©f£¨x£©=x+a-1£®
Èôx=-2a£¬Ôòx+a-1=-a-1=0£¬µÃa=-1£¬ÕâÓëa£¾0ì¶Ü£¬
¡àx¡Ù-2a£¬
¡àf(x)=
=1-
(x¡Ù-2a)£¬
¹Êy=f£¨x£©µÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬Æä¶Ô³ÆÖÐÐÄΪµã£¨-2a£¬1£©£®
£¨2£©¡ßf(x)¡Ê[
£¬
]£¬
¡à
¼´
ÓÖ¡ßa£¾0£¬¡à
µÃx¡Ê[2£¬3a+5]£®
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬
¡àf(x)=
£®
ÓÉ0£¼an+1¡Ü
µÃ
¡Ý2¡Á
+1£¬
¼´
+1¡Ý2(
+1)£®
Áîbn=
+1£¬Ôòbn+1¡Ý2bn£¬
ÓÖ¡ßan£¾0£¬¡àbn£¾0£¬¡à
¡Ý2£®
¡ßa1=1£¬¡àb1=2£¬
¡àµ±n¡Ý2ʱ£¬bn=b1¡Á
¡Á
¡Á¡¡Á
¡Ý
=2n£®
ÓÖ¡ßb1=2Ò²·ûºÏbn¡Ý2n£¬
¡àbn¡Ý2n£¨n¡ÊN*£©£¬¼´
+1¡Ý2n£¬
µÃan¡Ü
(n¡ÊN*)£®
Ҫʹan£¼
ºã³ÉÁ¢£¬
Ö»Ðè
£¼
£¬¼´2n£¾11£¬
¡àn£¾3£®¹ÊÂú×ãÌâÉèÒªÇóµÄ×îСÕýÕûÊýN=3£®
¢ÚÓÉ¢ÙÖªan=
£¬
¡àanan+1=
£¬
a1a2=
£¼
£¬
a1a2+a2a3=
+
=
£¼
£¬
¡àµ±n=1£¬2ʱ£¬²»µÈʽ³ÉÁ¢£®
µ±n¡Ý2ʱ£¬
¡ß
=
£¼
£¬
¡àanan+1£¼
•an-1an£¼(
)2•an-2an-1£¼¡£¼(
)n-2•a2a3=
•(
)n-2£¬
¡àa1a2+a2a3+a3a4+¡+anan+1¡Ü
+
(
+
+
+¡+
)
=
+
(1-
)£¼
+
=
=
£®
Èôx=-2a£¬Ôòx+a-1=-a-1=0£¬µÃa=-1£¬ÕâÓëa£¾0ì¶Ü£¬
¡àx¡Ù-2a£¬
¡àf(x)=
x+a-1 |
x+2a |
a+1 |
x+2a |
¹Êy=f£¨x£©µÄͼÏóÊÇÖÐÐĶԳÆͼÐΣ¬Æä¶Ô³ÆÖÐÐÄΪµã£¨-2a£¬1£©£®
£¨2£©¡ßf(x)¡Ê[
1 |
2 |
4 |
5 |
¡à
|
|
ÓÖ¡ßa£¾0£¬¡à
|
µÃx¡Ê[2£¬3a+5]£®
£¨3£©¢ÙÓÉf£¨0£©=0µÃa=1£¬
¡àf(x)=
x |
x+2 |
ÓÉ0£¼an+1¡Ü
an |
an+2 |
1 |
an+1 |
1 |
an |
¼´
1 |
an+1 |
1 |
an |
Áîbn=
1 |
an |
ÓÖ¡ßan£¾0£¬¡àbn£¾0£¬¡à
bn+1 |
bn |
¡ßa1=1£¬¡àb1=2£¬
¡àµ±n¡Ý2ʱ£¬bn=b1¡Á
b2 |
b1 |
b3 |
b2 |
bn |
bn-1 |
| ||
n¸ö |
ÓÖ¡ßb1=2Ò²·ûºÏbn¡Ý2n£¬
¡àbn¡Ý2n£¨n¡ÊN*£©£¬¼´
1 |
an |
µÃan¡Ü
1 |
2n-1 |
Ҫʹan£¼
1 |
10 |
Ö»Ðè
1 |
2n-1 |
1 |
10 |
¡àn£¾3£®¹ÊÂú×ãÌâÉèÒªÇóµÄ×îСÕýÕûÊýN=3£®
¢ÚÓÉ¢ÙÖªan=
1 |
2n-1 |
¡àanan+1=
1 |
(2n-1)•(2n+1-1) |
a1a2=
1 |
3 |
3 |
7 |
a1a2+a2a3=
1 |
3 |
1 |
21 |
16 |
42 |
3 |
7 |
¡àµ±n=1£¬2ʱ£¬²»µÈʽ³ÉÁ¢£®
µ±n¡Ý2ʱ£¬
¡ß
anan+1 |
an-1an |
2n-1-1 |
2n+1-1 |
1 |
2 |
¡àanan+1£¼
1 |
2 |
1 |
2 |
1 |
2 |
1 |
21 |
1 |
2 |
¡àa1a2+a2a3+a3a4+¡+anan+1¡Ü
1 |
3 |
1 |
21 |
1 |
20 |
1 |
2 |
1 |
22 |
1 |
2n-2 |
=
1 |
3 |
2 |
21 |
1 |
2n-1 |
1 |
3 |
2 |
21 |
18 |
42 |
3 |
7 |
µãÆÀ£º±¾Ì⿼²éÊýÁкͲ»µÈʽµÄ×ÛºÏÓ¦Ó㬿¼²éÊýÁеÄÐÔÖʺÍÓ¦Ó㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶Ô¼ÆËãÄÜÁ¦µÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿