题目内容

【题目】已知在数列中, .

(1)证明数列是等差数列,并求的通项公式;

(2)设数列的前项和为,证明: .

【答案】(1)(2)见解析

【解析】试题分析:(1)证明一个数列是否为等差数列的基本方法有两种:一是定义法:证明为常数;二是等差中项法,证明,若证明一个数列不是等差数列,则只需举出反例即可;(2)观测数列的特点形式,看使用什么方法求和.使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源和目的.3)在做题时注意观察式子特点选择有关公式和性质进行化简,这样给做题带来方便,掌握常见求和方法,如分组转化求和,裂项法,错位相减.

试题解析:(1)由,得, (2分)

两式相减,得,即, (4分)

所以数列是等差数列. 5分)

,得,所以, (6分)

. 8分)

2)因为11分)

所以

) (14分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网