题目内容
12.已知|a-b|=|a|+|b|,且|a|=5,|b|=3,求ab的值.分析 由题意可得a=5、b=-3,或a=-5、b=3,由此可得ab的值.
解答 解:由|a-b|=|a|+|b|,且|a|=5,|b|=3,可得a=5、b=-3,或a=-5、b=3,
∴ab=5-3=$\frac{1}{125}$,或 ab=(-5)3=-125.
点评 本题主要考查绝对值的意义,属于基础题.
练习册系列答案
相关题目
2.下列函数中指数函数的个数为( )
①y=($\frac{1}{2}$)x-1;②y=2•3x;③y=ax(a>0且a≠1);④y=1x;⑤y=($\frac{1}{2}$)2x-1.
①y=($\frac{1}{2}$)x-1;②y=2•3x;③y=ax(a>0且a≠1);④y=1x;⑤y=($\frac{1}{2}$)2x-1.
A. | 1个 | B. | 2个 | C. | 4个 | D. | 5个 |
17.边长与对角线长均相等的空间四边形ABCD中,AB与CD的中点分别是P、Q,作与直线PQ垂直的任一平面α,则空间四边形ABCD在平面α内的射影是( )
A. | 梯形 | B. | 矩形但非正方形 | C. | 菱形但非正方形 | D. | 正方形 |